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Research Goals

> To come up with a control approach that 1s:
= Optimal or approaching optimality in the limit
= Applicable to both linear and non-linear systems

= Data-based (no need for an explicit analytical model of
of the system)

= Adaptive to account for slowly time-varying dynamics
dynamics and operating conditions.

> Application to aircraft.



i General Problem Statement:

= For the system dynamics:
x(k +1) = flx(k), u(k), p(k), k]
y(k) = h[x(k), u(k)]
= Find a control law:
u(k) = u[x(k)]

= To maximize a performance index (minimize a cost
function)

J = %i[x(k + )7 Ox(k + 1) + ulke +i—1)T Ru(k +i—1)]

i=l



Approaches:

> Dynamic optimization approaches:

= Calculus of variations approach.

= Euler-Lagrange equations.
= Dynamic programming.
« Hamilton-Jacobi-Bellman equation.
= Specialization to Adaptive critic designs.

> Static optimization approach:

s Parametric Optimization.

s Cost-to-go approach.



Direct Parametric Optimization Approach:

Methodology:

x(k)—»

u(x(k), G)

—>

f(x(k), u(k))

» x(k +1)

Find the unknown coefficients, 'G’ , that minimize the cost-to-go function

V(k,G) = - Y [x(ke + i) Qx(ke + i) + u(ke + i - 1) Ru(k + i - 1)

1
2%

Disadvantages:

= This approach reduces to solving a static optimization problem which is
highly nonlinear even for linear systems

= Easily gets stuck in spurious local minima even for the case of finding a
linear optimal controller for a linear system

= Chance of finding a workable optimal controller using such an approach
in practice is very limited.



lllustrative Example:

For a simple linear time invariant system,

x(k + 1) = Ax(k) + Bu(k)
and u(k) = Gx(k)

we can write,

x(k +1i) = (A + BG)' x(k)

And so,

Vik,G) = % S [x(he + 7 Qutle + i) + ufle + i — )T Ru(fe + i -1

i=1

1 r . . o .
=3 x(l)">[(A+BG" {A+BG' +(A+BG"" G"RGA +BG" " x(k)
i=l
As seen the cost-to-go function expressed with a single parameter ‘G’, is a highly
nonlinear function of the parameter and as seen from several test examples was found
found to contain several minima.



Modified Approach:

s Reformulate the control law:

u(k) = u,[x(k), G,]
u(k +1) = u,[x(k), G,]

wik +r-1) = u, [x(k), G,]

7’ represents the order of
approximation of the cost-to-go function

= Set up the cost-to-go function in terms of the ‘G’s’:

V(k,G,..,.G) :%i[x(k+ )TOx(k +1) + ulkc +i—- )" Rulk +1i-1)]

i=1



Modified Approach...

= Find the G’s by imposing the stationarity conditions:
W _ oV oV
0G, 0G,  0G,
and

G, = G,(f.G,Q.R)

0;

Gr = Gr(f’ Gr—l’ Q’ R)

= Solving the second set of equations is not as easy and even less
implementable in terms of a control architecture.

= x(k), the present state of the system appears as a coefficient in the
stationarity conditions.

= By solving the stationarity conditions for multiple x(k) s, presents
enough equations for solving for the unknown G’s without solving the
the second set of conditions.



lllustrative Example:

For a simple linear time invariant system,
x(k +1) = Ax(k) + Bu(k)

we can write,
u(k) =G, x(k)

u(k +1) = G, x(K)

u(tk +r —1) =G, x(k)
And so,
x(k +i)=(A'+ A"'BG, +... + ABG,_, + BG,)x(k)

V (k) = % X(K)'[(A" +...+ ABG,_,; +BG,)' Q(A" +...+ ABG,_, +BG,)

+..+(A+BG,) Q(A+BG,)+G, ' RG, +...+G,' RG,]x(k)

As seen the cost-to-go function now expressed with the
parameters ‘G’s’, 1s a quadratic function of the parameter and
therefore has a single minimum



Role of Neural Networks

For a nonlinear system, the controller is typically nonlinear.
nonlinear.

Cost-to-go function 1s a nonlinear function.

Being universal function approximators, Neural Networks
present themselves as ideal tools for handling nonlinear
systems 1n the proposed Cost-to-go design approach

Neural networks present a straightforward approach for
making the design adaptive even in the case of a nonlinear
system.



Formulation of the Control Architecture:

NN Cost-to-go function Approximator

Parameterize the cost-to-go function using a Neural Network (CGA
(CGA Neural Network)

Inputs to the CGA Network:
x(k), u(k),...,u(k+r-1)

Use the analytical model, or a computer simulation or the physical
physical model to generate the future states.

Use the 7’ control values and the 7’ future states to get the 1deal
ideal cost-to-go function estimate.

V(k) =%2[x(k +)TOxc+1) + u(lc+i-1)"Ru(lc + i —1)]

Use this to train the CGA Neural Network



CGA Neural Network Training
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Formulation of the Control Architecture:

NN Controller

= Instead of a single controller structure (G), we need ‘r’
controller structures.

= The outputs of the ‘r’ controller structures, generate u(k)
through u(k+r-1).

= Parameterize the ‘v’ controller structures using an effective
Neural Network.

Neur al u(k)
M, Network | 90FD
Controller [uk+r-1)




Neural Network Controller Training

x(K) "

x(K)

Neural
Network
Controller-.

uk) ™ ™

uk+1) |

Trained
Cost-to-go
Neural

....... Network ... |-

ou

V(K)

= Gradient of V(k) with respectt to the control inputs u(%) ,...,
u(k+r-1) 1s calculated using back-propagation through the
‘CGA’ Neural Network.

= These gradients can be further back-propagated through the
Neural Network controller to get,

5 %’&1 Network %’g&oller 1s trained so that

AV (k)
G

i

> 0,i=1...r

through



Advantages of the formulation

The modified parametric optimization simplifies the
optimization problem.

CGA Network training and the controller Network training 1s
1s decoupled.

Implementation 1s system independent. So the basic
architecture remains the same for linear or nonlinear systems.
systems.

Implementation is data-based. No explicit analytical model
needed.

Parameterization using Neural Networks makes the control
architecture adaptive.

Order of approximation 7’ in the definition of V(k) serves as
as a tuning parameter.



Implementation for Linear

i Systems:

> Motivation:

= Linear systems provide an easy way to see the
details of the implementation of the cost-to-go
g0 design.

= Provides a means for comparison of the results
results with existing solutions.



Optimal Control of Aircraft Lateral Dynamics

Airplane State Variables:
B - Side slip angle

p- Roll rate

r - Yaw rate

¢ - Roll angle

CBk+1)] [ 0.9811
p(k+1)| | -0.0848
r(k+1) | | 0.0690

 p(k+1)| | -0.0004

0, (k)
0, (k)

ktr-1

Vi)=Y (B+D) pi+) ri+]) ofi+])

0
0.9665
—0.0035
0.0098

Lift

~0.0099  0.0036 | B(k)]
0.0075 —0.002 | p(k)
0.9992  0.0001 || r(k)
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Airplane Input Variables:

6r - Rudder Deflection

6a - Aileron Deflection

Phoenix Hobbico
Hobbistar 60™ model
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—-0.0504 0.0637 || o,
—0.0024 -0.0179

0 0 0 500] gi+])

| -0.0003  0.0003 |



= Optimal controller gains calculated using L QR optimal
solution with perfect knowledge of the system:

-1.1945 19.3901
-5.0124 -4.8498

G = -4.3039 3.4120
-7.0398 -0.3318

=Evaluated optimal cost = 710.0925

= Gain obtained using the new data-based appr oach:

Order of approximation | Evaluated | Control gain
(7’ cost (J°)
75 10.1598 |o-[~37907 37868 07872 16.6319°
' | -6.5535 -0.4424 -4.5207 -5.1355
35 10.0935 | _[-42247 33616 -1.1687 18.7413]
[ -6.9927 03411 -4.9646 -4.8351
50 10.0925 G_'—4.3002 3.4077 -1.1967 19.3265 |
| -7.0389 -03313 -5.0102 -4.8365




Comparison of the state trajectories using the cost-to-go design and
the LQR design
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aan - State trajectories using the cost-to-go design (r = 35)
kxx - State trajectories using the cost-to-go design (r = 50)
—— - State trajectories using LQR based optimal control



Comparison of the control trajectories using the cost-to-go design
~and the LQR design
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Nonlinear Control of Aircraft in an

approach configuration

Aircraft in an approach configuration

Equations of motion in the
wind-axes system

X =Vcosy
h=Vsiny
v=Tcosa-2 - siny
Nominal Flight Conditions m m 7
y= T o L _g
V,ory (t/5) | Yoom (d€2) | Gpom (de@) | Top () | V= iqy "9 Ty~ €%V
g = OT - T)
235 3 3.6 | 16800 .
Aircraft Parameters
M (slugs) | T, (Ib) | S, )| C, |C, |Co [Te |E
4660 42000 |[1560 |[1.36(5.04(0.064 (4 0.067




Implementation Detalls

= Equations are written with a change of coordinates while maintaining
the nonlinearity.

D) =X~ X, ()

=[X0-X,(0 HO-Rof) VOV KO~ Viom TO-T, 1"
Mt =uD) -y,

=[a® -G o, A -IT,, L

= AX and Ah are transformed through a coordinate transformation,
AX

approach
Ah

=Ahsiny, +AXcosy,,,.
=Ahcosy,,,6 —AXsiny,

approach

so that now they represent perturbations along and perpendicular to
the approach slope and we can now ignore the dynamics of the
perturbation along the approach slope.



Implementation Detalls...

Equations of motion in terms of the nonlinear perturbation dynamics:

A’:"approach = (Vnom + AV) Sin(Ay)
AV = (Toom * AT) cos(a,,, + Aa) - D_ gsin(y,,, +4y)
m m
= Loon *8) g, +Aa) + —— = 9 COS(Vpam *+ )
m(me +AV) m(V__ +AV) (Vnom +AV)
A - (BT - AT)

4

e

Equaé i0ns ire Hierettze S with ¥ tindt slep of A5 5eb6hds
Specification of the cost function:

| e
Z [Ax(i + DT QAX(i + 1) + Au(i)T RAu(i)]

i=1

AST]

Q =diag([10™ 10~ 1 107°))
R =diag([l 107%))



Control Architecture
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! —_Controller Jt (linear)
N J present and J
future outputs
CGA hidden
Controller Controller layer
hidden layer output layer (sigmoid)
(sigmoid) (linear)

Combined Neural Network having the CGA Network in front of the Controller
Network.

Forming a combined Neural Network
Fix the weights of the CGA part of the Network
Training inputs to the network: Random values of x(k)

Train the Network so that 1t gives the output value of zero for all
the input random x(%)



Bringing Structure to the CGA Network

______________________________________________________________

V(K)

X(k+1)
Subnet 1
X(k+2)
Subnet 2
X(K)
Subnet r x(k+r) A Layer
With
Quadratic
u(k) Neurons
Controller u(k+1)
> Network
u(k+r-1)
CGA Network

A Control Architecture Proposed to Simplify the Neural Network

Training Problem



Implementation of the quadratic

layer

> A (q1X12 +CI2X22)

2
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| —
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sguar e neurons



i Advantages of the new structure:

= Guaranteed positive definiteness.

= Replaced training of a complex function by
by the training of several simpler functions.
functions.

= A good quality control ability.
= Allow for hybrid architecture



Implementation of the Hybrid CGA Network of order ‘r
= 10, using trained subnets of order 1 through 5

© subnet 1|+ N QLujjerracfflc
> > Neurons V(k)
u(k) J > Lo —
—|Subnet 2 :_Z(XTwaT Ru)
U(k)l,:> il=k+1
i(k+l) x(k+6)
)|:> Subnet 3 X(k+3) » Subnet 3 5
L(K),. ., u(k+3),!?,:> - 5
kg Subnet 4 uk+s) P J —
— >
J(k)l?:?, X(k+4) =
(k3 Subnet 5
>
I::> X(k+5) ::> Subnet 4
u(k),...,u(k+4) u(k+4),...,
ML:; Subnet 4
u(k+5),...,
(CH8) —p Subnet 5 T10
u(k+5),... u(k+9) X(k+10)




Internal Structure of the Neural Network Controller showing the
separate Controller Subnets

> uK

X(K)
— u(k+)

—> u(k+r-1)




Neural Network Controller training using the trained CGA Network

x(K)

|
N u(k i
COH’[I'\O’ILGI' ) Trained , V(k)
—»|  Network>, [ulk+ CGA —:—> =

(G19G29"'9Gr)\w> Network B

I
I
Combination Network with the controller :

Network before the Critic Network I



Cumulative value of V(k) getting minimized with

training of the Neural Network Controller Weights
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. Alrcraft response after an Initial perturbation with and
without control

AX(1)=[200 -30 0.15 -7000]
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. [7-Open loop dynamics, [+ Response with the Optimal Nonlinear Neural Network Controller, ‘O’ — Response with the
LOR
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A comparison of the cost function, J, as a
function of the order of approximation, ‘r’ of V(K)

r J
5 410.8852
10 168.2999
15 93.6265
20 92.4814
25 88.5529




Nonlinear Optimization- Global or Local

Iraining arror

| | | |
g 50 100 150 200 250 00 350
Training Epochs




i Conclusions:

s New Neural Network Control Architecture for
optimal control.

= Applicable to both linear and nonlinear systems
= Data based.
= Systematic training procedure.

s Confirmation on a Nonlinear Aircraft Model.



